
Multipath QUIC: Design and Evaluation
Quentin De Coninck∗
UCLouvain, Belgium

quentin.deconinck@uclouvain.be

Olivier Bonaventure
UCLouvain, Belgium

olivier.bonaventure@uclouvain.be

ABSTRACT
Quick UDP Internet Connection (QUIC) is a recent protocol initiated
by Google that combines the functions of HTTP/2, TLS, and TCP di-
rectly over UDP, with the goal to reduce the latency of client-server
communication. It can replace the traditional HTTP/TLS/TCP stack
and the IETF has chartered a working group to standardize it. QUIC
encrypts all data and most protocol headers to prevent interferences
from middleboxes.

Motivated by the success of Multipath TCP (MPTCP), we de-
sign Multipath QUIC (MPQUIC), a QUIC extension that enables a
QUIC connection to use different paths such as WiFi and LTE on
smartphones, or IPv4 and IPv6 on dual-stack hosts. We implement
MPQUIC as an extension of the quic-go implementation. We evalu-
ate the benefits of QUIC andMPQUIC by comparing themwith TCP
and MPTCP in a variety of settings. MPQUIC maintains MPTCP’s
benefits (aggregation benefit, network handover). Without packet
losses, while performance of single-path TCP and single-path QUIC
are similar, MPQUIC can outperform MPTCP. In lossy scenarios,
(MP)QUIC is more suited than (MP)TCP.

CCS CONCEPTS
• Networks → Network protocol design; Transport proto-
cols; Application layer protocols; Cross-layer protocols;

ACM Reference format:
Quentin De Coninck and Olivier Bonaventure. 2017. Multipath QUIC: De-
sign and Evaluation. In Proceedings of CoNEXT ’17: The 13th International
Conference on emerging Networking EXperiments and Technologies, Incheon,
Republic of Korea, December 12–15, 2017 (CoNEXT ’17), 7 pages.
https://doi.org/10.1145/3143361.3143370

1 INTRODUCTION
Innovation in the network and transport layers of the TCP/IP pro-
tocol suite has been rather slow during the past decades. It took
roughly twenty years to design, implement and deploy IPv6 [13].
Despite the proliferation of middleboxes [22], TCP continues to be
incrementally improved [14] with recent extensions including Mul-
tipath TCP [17] or TCPCrypt [3]. New transport protocols such as
SCTP [46] generated interest [5], but are still not widely deployed.

∗FNRS Research Fellow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5422-6/17/12. . . $15.00
https://doi.org/10.1145/3143361.3143370

Given the prevalence of middleboxes on the Internet, innova-
tion in the transport layer must take a different approach. QUIC
(Quick UDP Internet Connection) [10, 44] is an interesting solution
to this problem. It was initially proposed by Google to speed up
page downloads. QUIC includes from day one the cryptographic
mechanisms that are required to authenticate the server and nego-
tiate encryption keys, so QUIC encrypts both the data and almost
all the header fields. This prevents middleboxes from interfering
with QUIC and ensures that the protocol will not be ossified by
deployed middleboxes. QUIC uses a flexible packet format and lever-
ages the reliability and congestion control mechanisms of modern
TCP stacks. Finally, QUIC supports different streams that prevent
head-of-line blocking when downloading different objects from a
single server.

One missing feature of QUIC is the ability to exploit the differ-
ent paths that exist between a client and a server. Today’s mobile
devices such as smartphones have several wireless interfaces and
users expect to be able to combine them easily. Furthermore, a
growing fraction of hosts are dual-stack and the IPv4 and IPv6
paths between them often differ and have different performance
[2, 29, 30]. Multipath TCP (MPTCP) [17] is a recent TCP extension
that addresses this problem since it enables a TCP connection to
send data over different paths. MPTCP can aggregate the bandwidth
of the different paths that it uses [41]. This is beneficial on smart-
phones that need to combineWiFi and cellular [7]. On smartphones,
MPTCP enables faster handovers and improves user experience [35].
Apple has recently announced [8] that all iOS11 applications will
be able to use MPTCP. QUIC cannot currently support those use
cases because it uses a single UDP flow between the client and the
server. QUIC connection migration allows moving a flow from one
address to another. This is a form of hard handover. Experience
with MPTCP on smartphones [4, 11] shows that multipath provides
seamless handovers.

In this paper, we first describe the basic principles of QUIC in
Section 2. We then build upon the lessons learned with MPTCP [41]
and propose in Section 3 extensions to QUIC to enable it to simul-
taneously operate over multiple paths. Our design remains clean
and simple thanks to the flexibility of the QUIC protocol. We imple-
ment Multipath QUIC inside the QUIC open-source implementation
written in go [9] and compare in Section 4 its performance with
MPTCP in a wide range of scenarios using Mininet [21]. Section 5
summarizes our work and presents future work.

2 QUIC BACKGROUND
Large web companies and Content Distribution Networks make
huge efforts to improve the performance and the security of web
protocols. QUIC [20, 23, 24] is a recent proposal initiated by Google
and embraced by many others that collapses the functions of the
classical HTTP/2, TLS and TCP protocols into a single application

https://doi.org/10.1145/3143361.3143370
https://doi.org/10.1145/3143361.3143370

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Quentin De Coninck and Olivier Bonaventure

layer protocol that runs over UDP [10]. QUIC is already widely de-
ployed, Google recently estimated that QUIC represents 7% of the
total Internet traffic and the IETF is actively working on standard-
izing a version of QUIC [23]. The design of QUIC has been inspired
by earlier work in the transport layer [18, 46]. An important design
choice of QUIC is that QUICmessages are almost entirely encrypted
to prevent the ossification that middleboxes cause on protocols like
TCP [22].

QUIC is a connection-oriented protocol. Each QUIC connection
starts with a secure handshake 1 and is identified by a Connection
ID (CID). During the secure handshake, hosts negotiate the version
of QUIC that will be used. The combination of version negotiation
and encryption allows QUIC to easily evolve regardless of mid-
dleboxes. Each QUIC packet contains a small unencrypted public
header containing a few flags, the CID, the Packet Number (PN)
and an encrypted payload. Each host maintains separate PNs for
sending and receiving data. PNs are monotonically increasing on a
connection. When data is retransmitted, it is placed in a packet with
a higher PN than the original one. This simplifies several transport
functions by removing the ambiguity of multiple retransmitted
packets with the same PN that affects round-trip-time estimation
and loss recovery in TCP. The encrypted payload of a QUIC packet
contains one or more frames. Frames carry data and control in-
formation while QUIC packets act as their "containers". They are
detailed in [23]. The main ones are briefly summarized below.

QUIC supports several streams like SCTP [46] as required for
HTTP/2. The STREAM frame contains a Stream ID, a byte offset and
the payload associated to that stream. The ACK frame is a kind of
generalization of TCP and SCTP’s SACK blocks. ACK frames con-
tain ACK blocks that provide detailed information on the received
frames. They also include an ACK delay field enabling the peer to
accurately estimate round-trip-time, even if ACK frames are de-
layed. The WINDOW_UPDATE frame2 is used to advertise the receive
window of the peer. It only appears in some packets, unlike TCP
that places a window field in all packets.

Most of the discussions on QUIC occur currently within the
IETF and on the related mailing lists. As of October 2017, few
scientific articles have analyzed QUIC or its performance. Megyesi
et al. compare QUIC, SPDY and HTTP [32]. They analyze page load
times and report that each protocol has some advantages over the
others in some environments. Carlucci et al. performed a similar
study with HTTP/1.1 and an earlier version of QUIC [6]. Langley
et al. reported QUIC represents more than 30% of the egress traffic
at Google, a large fraction being induced by mobile devices [28].
Kakhki et al. [25] identified some performance issues with the
Chromium implementation of Google QUIC.

3 MULTIPATH QUIC
There are two main motivations for adding multipath capabilities to
a protocol like QUIC. The first one is to pool resources of different
paths to transport the data for a single connection [47]. This is
important for large transfers on multihomed devices such as smart-
phones, but can also allow dual-stack hosts to automatically select
the best path when the quality of the IPv4 and IPv6 paths differ.

1The currently deployed handshake [31] will be replaced by TLS 1.3 [42].
2It will be replaced by MAX_DATA and MAX_DATA_STREAM frames [23].

Figure 1: High-level architecture of Multipath QUIC.

Another motivation is the resilience to connectivity failures. On
dual-homed hosts with wireless interfaces, such as smartphones,
one wireless network can fail at any time and users expect that
their applications will immediately switch to the other one with-
out any visible impact [8, 35]. These use cases are well covered by
Multipath TCP [4, 8]. The remainder of this section describes the
design of Multipath QUIC (MPQUIC) whose high-level architecture
is depicted in Fig. 1.

Path Identification. Hosts need to agree on a way to identify
the different paths used. A first solution would be to make those
paths implicit by sending ranges of packet numbers over a particular
path. However, paths can exhibit heterogeneous characteristics
with very different delays. Because the packet number in the public
header is not encrypted, middleboxes in the network can see it and
might decide to drop packets with lower packet number than the
highest seen on a connection. Such a device placed in front of a sever
using multiple paths might break the slowest path. MPQUIC takes
the explicit approach by including in the public header of each
packet the Path ID on which it was sent. The presence of the
Path ID also allows MPQUIC to use multiple flows when a remote
address changes over a particular path, e.g., due to NAT rebinding.
In such cases, path information (such as round-trip-time or packets
lost) and congestion state can be kept unchanged.

Reliable Data Transmission. QUIC uses encrypted STREAM
frames to send data. These frames contain a stream identifier and
a byte offset. This information is sufficient to enable a receiver
to reorder the STREAM frames that it receives over different paths.
However, the acknowledgement is per-packed based and reorder-
ing could affect packets sent on different paths due to network
heterogeneity. With a single packet number space, this can lead to
huge ACK frames containing many ACK blocks. To cope with this,
each path has its own packet number space, as shown on Fig. 1. By
combining the Path ID and the packet number in the public header,
MPQUIC exposes the paths to middleboxes. MPQUIC also adds a
Path ID field to the ACK frame. This enables a receiver to acknowl-
edge QUIC packets that have been received on different paths. Our
implementation returns the ACK frame for a given path on the path
where the data was received, but since it contains the Path ID,
it is possible to send ACK frames over different paths. Notice that
reusing the same sequence number over different paths might have
a detrimental impact on security, as the cryptographic nonce will be
reused. To mitigate this, a first solution is to restrict that a sequence
number could be used only once over all paths. Another possibility
is to involve the Path ID in the nonce computation, such that it is
not possible to get the same nonce across different paths.

Multipath QUIC: Design and Evaluation CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

Path Management. A QUIC connection starts with a secure
handshake. Like QUIC, MPQUIC performs the cryptographic hand-
shake over the first path. There are probably opportunities to lever-
age the availability of several paths for the secure handshake, but
we leave this work to future. MPQUIC uses a path manager that
controls the creation and deletion of paths. Upon handshake com-
pletion, it opens one path over each interface on the client host.
An important difference compared to MPTCP is that MPQUIC can
directly use a new path by placing data in the first packet. MPTCP re-
quires a three-way handshake before being able to use any path
[17]. Since MPQUIC allows both hosts to create paths, paths created
by the client (resp. the server) have an odd (resp. even) Path ID
to avoid Path ID clashes. However, our implementation does not
currently use server-initiated paths because clients are often behind
NATs or firewalls that would block them. To enable, e.g., a dual-stack
stack server to advertise its IPv6 address to the client over an IPv4-
initiated connection, MPQUIC includes an ADD_ADDRESS frame that
advertises all the addresses owned by a host. This frame can be
reliably exchanged at the beginning of a connection or when ad-
dresses change. Given that this frame is encrypted, it does not suffer
from the security concerns of the ADD_ADDR option in MPTCP [17].
MPQUIC also enables hosts to get a global view about the active
paths’ performances over a connection through the PATHS frame. It
contains Path IDs of the paths considered as active by the sending
host and statistics such as the estimated path round-trip-time. It
can be used to detect underperforming or broken paths and can
thus speed up the handover process in mobility scenarios.

Packet Scheduling.As soon as several paths are active, aMPQUIC
sender needs to select over which path each packet will be trans-
mitted. This selection is performed by the packet scheduler. Several
packet schedulers have been proposed and analyzed for Multipath
TCP [16, 33, 36]. ForMPQUIC, our starting point is the default sched-
uler used by the MPTCP implementation in the Linux kernel [34]. It
relies on the smoothed measured round-trip-time (RTT) and prefers
the path with the lowest RTT provided that its congestion window
is not already full. MPQUIC uses the same heuristic, but with two
differences. First, while MPTCP has to decide which data (either
new or reinjected) will be sent on which path, the MPQUIC sched-
uler also determines which control frame (ACK, WINDOW_UPDATE,
PATHS,...) will be sent on a particular path. Since frames are inde-
pendent of the packets containing them, they are not constrained to
a particular path. When a packet is marked as lost, its frames are not
necessarily retransmitted over the same path, while MPTCP is forced
to (re)transmit data in sequence over each path to cope with mid-
dleboxes. Retransmission strategy is thus more flexible in MPQUIC
than in MPTCP. To prevent receive buffer limitations, the scheduler
ensures proper delivery of the WINDOW_UPDATE frames by sending
them on all paths when they are needed. Second, when a new path
starts in MPQUIC, the scheduler does not have an estimation of
the path’s RTT yet. A first solution would be to ping the new path
and wait 1 RTT to obtain this measurement, but MPQUIC would
then lose its ability to directly send data on new paths. Another
approach would be to use round-robin at the start of the connection
and automatically switch to lowest RTT path once RTT estimations
are available. However, this approach is fragile when paths exhibit
very different delays and hosts could then possibly face head-of-line

blocking. Our scheduler duplicates the traffic over another path
when the path’s characteristics are still unknown. While this in-
duces some overhead, it enables faster usage of additional paths
without facing head-of-line issues.

Congestion Control. To achieve a fair distribution of network
resources, transport protocols rely on congestion control algo-
rithms. Both single-path TCP (in the Linux kernel) and QUIC (in
the quic-go and the Chromium3 implementations) use CUBIC [19].
Using CUBIC in a multipath protocol would cause unfairness [48].
Several multipath congestion control schemes have been proposed
[27, 38, 48]. In our MPQUICimplementation, we integrate the OLIA
congestion control scheme [27], which provides good performance
with MPTCP. The adaptation and the comparison of other mul-
tipath congestion control schemes to MPQUIC is left for further
study.

Overall, ourMultipath extensions toQUIC are simpler and cleaner
than the Multipath extensions to TCP [17], while keeping them as
deployable as possible. Thanks to the clean support for multiple
streams in STREAM frames, MPQUIC does not need to specify a new
type of sequence number in contrast to MPTCP’s DSN. MPQUIC
does not need to specify mechanisms to detect or react to middlebox
interference given that all frames are encrypted and authenticated.
This also reduces the possibility of attacking a QUIC connection
in contrast to MPTCP whose security relies on keys exchanged in
clear during the initial handshake [17]. Furthermore, thanks to the
independence between packets and frames, MPQUIC can spread
multiple data streams over multiple paths by design and the packet
scheduling is potentially more powerful than MPTCP’s one. Finally,
the flexibility of QUIC allows us to easily define new types of frames
to enhance the protocol.

4 PERFORMANCE EVALUATION
There are several approaches to evaluate the performance of a
transport protocol. Many TCP extensions have been evaluated by
simulations before being deployed [15, 40, 41]. The QUIC designers
deploy improvements on the Google servers and use the collected
statistics to tune the protocol [28]. In this paper, we rely on mea-
surements on the Mininet emulation platform [21] with complete
(MP)QUIC and (MP)TCP implementations and use (MP)TCP as the
baseline. To provide a fair assessment of the compared implemen-
tations, we use an experimental design approach similar to the
one used for MPTCP [37] and cover a wide range of parameters.
This allows a fairer comparison of the multipath benefits than only
considering a few well-chosen cases. Real-world evaluation is part
of our future work.

4.1 Large File Downloads
Our first scenario is the download of a large file over a single stream.
Here, a multihomed host wants to minimize the download time and
thus maximize the aggregation of the bandwidth of the available
paths.

We consider a multipath network with two multihomed hosts
over disjoint paths with different characteristics as shown in Fig. 2.
In this case, the performance of multipath protocols is a func-
tion of the links’ bandwidth, the round-trip-time, the presence
3Chromium recently started to use BBR as its default congestion control.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Quentin De Coninck and Olivier Bonaventure

Figure 2: Simple network with two hosts and disjoint paths.

Low-BDP High-BDP
Factor Min. Max. Min. Max.

Capacity [Mbps] 0.1 100 0.1 100
Round-Trip-Time [ms] 0 50 0 400
Queuing Delay [ms] 0 100 0 2000
Random Loss [%] 0 2.5 0 2.5

Table 1: Experimental design parameters [37].

of bufferbloat (i.e., the queueing delay), and the random packet
losses. Our experimental design [37] selects the values of these
parameters using the WSP algorithm [45] over the ranges listed on
Tab. 1. We group the simulations into four classes: (low-BDP-no-loss)
environments with a low bandwidth-delay product and no random
losses, (low-BDP-losses) environments with a low bandwidth-delay
product and random losses, (high-BDP-no-loss) environments with
a high bandwidth-delay product but no random losses and (high-
BDP-losses) environments with a high bandwidth-delay product and
random losses. For each class, we consider 253 scenarios and vary
the path used to start the connection, leading to 506 simulations.
Each simulation is repeated 3 times for each protocol (TCP, MPTCP,
QUIC, MPQUIC) and we analyze the median run. We use the Linux
kernel version 4.1.39 patched with MPTCP v0.91 as our baseline.
Experiments run on a Intel Xeon E3-1245 V2 @ 3.40 GHz. The VM
has two dedicated cores and 2 GB of RAM.

To ensure a fair comparison given that QUIC uses encryption
which consumes CPU on our emulation platform, our measure-
ments use https over (MP)TCP (TLS 1.2 [43]) or (MP)QUIC (QUIC
crypto [31]). Each measurement downloads a 20 MB file in a single
stream and the client measures the delay between the transmission
of the first connection packet and the reception of the last byte of
the file. To ensure a fair comparison, we use CUBIC congestion con-
trol with the two single path protocols. Since there is no multipath
variant of CUBIC, we use the OLIA congestion control scheme with
Multipath TCP and Multipath QUIC. The maximal receive window
values are set to 16 MB for both TCP and QUIC.

Low-BDP-no-loss:MPQUIC outperformsMPTCP.Our first
metric is the ratio between the delay to receive this file over TCP
divided by the time required with QUIC. If the ratio is equal to
1, both protocols are equivalent. If the ratio is larger than 1, TCP
is slower than QUIC. Figure 3 provides the CDF of this ratio over
all considered scenarios in environments with a low bandwidth-
delay product and no random losses. Notice that packet losses due to
router buffer overflow can still occur in these environments.When a
single path is used, we do not observe a difference between TCP and
QUIC. This is expected since in this scenario, the congestion control
is the main influencing factor, and both use CUBIC. With multipath,

QUIC outperforms TCP in 89% of the considered scenarios. Indeed,
MPTCP faces head-of-line blocking more often thanMPQUIC.With
heterogeneous paths, MPTCP tends to send large bursts of packets
on the slow path. This might be related to the ambiguities linked to
the estimation of the round-trip-time in the Linux kernel that makes
the scheduler prefer the slow path after the fast path is under load,
possibly leading to head-of-line blocking. Under those conditions,
MPTCP uses the Opportunistic Retransmission and Penalisation
(ORP) [41] mechanism that also leads to retransmissions of packets
from the slow path over the fast path, limiting overall goodput.
Under the same conditions, MPQUIC is less aggressive towards
the slow path thanks to its precise path latency estimation and
avoids receive buffer limitations thanks to the transmission of the
WINDOW_UPDATE frames on all the available paths. Without random
losses, retransmissions are rare.

Experimental Aggregation Benefit. To better assess the ben-
efits of multipath protocols over single-path ones for specific sce-
narios, we rely on a modification of the aggregation benefit [26, 37].
Instead of comparing the measured goodput with the sum of the
link bandwidths, the experimental aggregation benefit compares
the sum of the goodputs achieved by single path protocols over
the two links with the goodput of the multipath variant. Let C be
a multipath aggregation simulation with n paths. Gi

s is the mean
goodput achieved by a single-path connection on path i .Gmax

s is
the maximum single-path mean goodput measured over the n paths.
The experimental aggregation benefit EBen(C) is given by

EBen(C) =

Gm−Gmax
s

(
∑n
i=1G

i
s)−Gmax

s
if Gm ≥ Gmax

s ,

Gm−Gmax
s

Gmax
s

otherwise.

An experimental aggregation benefit of 0 indicates that a multipath
protocol achieves the same performance as the single path variant
over the best path. If multipath achieves a mean goodput equal
to the sum of mean goodputs over all paths, then experimental
aggregation benefit equals 1. A value of -1 for the experimental
aggregation benefit indicates that the multipath protocol failed
to transfer data. Because we rely on experimental values, the ex-
perimental aggregation benefit can be greater than 1 when the
performance of multipath protocols are better than the sum of the
performances of the single path variant over each path. In this
paper, we compare Multipath QUIC with single-path QUIC and
Multipath TCP with single-path TCP.

Low-BDP-no-loss:Multipath is beneficial toQUIC. Figure 4
shows the experimental aggregation benefit over the 253 low-BDP
scenarios without random losses. Research with MPTCP [1] has
shown that its performance was impacted by the characteristics of
the initial path. We thus split the results into two categories depend-
ing on whether the connection is created on the best or the worst
performing path. Our measurements indicate that MPQUIC seems
less affected by the characteristics of the initial path than MPTCP.
This is probably related to the duplicate phase of the scheduler
and the absence of handshake latency when creating new paths,
the only difference between both cases being the QUIC connection
establishment latency over the initial path (1 RTT). MPQUIC can
reach an experimental aggregation benefit close to 1, even when
the connection starts on the less performing path. Independently

Multipath QUIC: Design and Evaluation CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

10−1 100 101

Time Ratio
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET 20 MB, 506 simulations low-BDP-no-loss
Time TCP / QUIC
Time MPTCP / MPQUIC

Figure 3: QUIC and TCP exhibit similar
performances. On average, Multipath
QUIC tends to be faster thanMultipath
TCP.

MPTCP vs. TCP MPQUIC vs. QUIC
Protocol

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ex
p.

 A
gg

re
ga

tio
n

Be
ne

fit

GET 20 MB, 253 scenarios low-BDP-no-loss

Best path first Worst path first

Figure 4: In low-BDP scenarios with-
out random losses using several paths
ismore beneficial to QUIC than to TCP.

10−1 100 101

Time Ratio
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET 20MB, 506 simulations, low-BDP-losses
Time TCP / QUIC
Time MPTCP / MPQUIC

Figure 5: In low-BDP scenarios (Multi-
path) QUIC reacts faster than (Multi-
path) TCP to random losses.

MPTCP vs. TCP MPQUIC vs. QUIC
Protocol

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ex
p.

 A
gg

re
ga

tio
n

Be
ne

fit

GET 20 MB, 253 scenarios low-BDP-losses

Best path first Worst path first

Figure 6:Multipath can still be advanta-
geous for QUIC in lossy environments,
though the measured goodput varies
more.

MPTCP vs. TCP MPQUIC vs. QUIC
Protocol

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ex
p.

 A
gg

re
ga

tio
n

Be
ne

fit

GET 20 MB, 253 scenarios high-BDP-no-loss

Best path first Worst path first

Figure 7: Multipath QUIC remains ad-
vantageous for long transfers in high-
BDP environments.

10−1 100 101

Time Ratio
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET 20MB, 506 simulations, high-BDP-losses
Time TCP / QUIC
Time MPTCP / MPQUIC

Figure 8: QUIC performs better than
TCP in high-BDP environments when
there are random losses.

of the initial path, MPQUIC reaches a higher experimental band-
width aggregation in 77% of our scenarios. For MPTCP, this number
drops to 45%. Getting precise estimations of the path latencies helps
MPQUIC to balance traffic while avoiding head-of-line blocking.

Low-BDP-losses: (MP)QUICoutperforms (MP)TCP.Random
losses, such as those that occur on wireless links, affect the perfor-
mance of reliable transport protocols. We now analyze the simu-
lations in low-BDP environments with such losses. As shown in
Tab. 1, we consider random losses up to 2.5%, which fits in the
retransmission rates experienced by the Google’s deployment [28].
Figure 5 shows that in those scenarios (MP)QUIC nearly always per-
forms better than (MP)TCP. This difference is mainly due to the ACK
frame that can acknowledge up to 256 packet number ranges. This
is much larger than the 2-3 blocks than can be acknowledged with
the SACK TCP option depending on the space consumed by the
other TCP options. Therefore, early retransmits are more effective
in QUIC and it suffers less from head-of-line blocking.

Low-BDP-losses: Multipath is still beneficial to QUIC. Fig-
ure 6 shows that using multiple paths reduces download time com-
pared to single-path over the best path. Note that the packet sched-
uling in MPQUIC is not affected by random packet losses given
QUIC’s round-trip-time estimation. Furthermore, a packet marked
as lost is not automatically retransmitted on the same path, unlike
MPTCP. When a packet is lost, the OLIA congestion control scheme

reduces the congestion window over the affected path. The loss
detection mechanisms can enable MPQUIC to take advantage of
multiple paths, even if they are lossy.

High-BDP-no-losses: MPQUIC performs well. When con-
sidering high-BDP environments, the experimental aggregation
benefit of MPTCP decreases, as shown in Fig. 7. In such networks,
connections mainly suffer from bufferbloat and head-of-line block-
ing due to receive window limitations. Using multiple paths with
different characteristics does not prevent those issues, and can pos-
sibly worsen them if those paths exhibit very different latencies.
Due to the additional path establishment delay, MPTCP favors the
initial path since it has more time to grow its congestion window
and is thus more fragile to bufferbloat. Because all paths can start
sending data at connection establishment, congestion windows
evolve more fairly and those issues are less visible with MPQUIC.
Indeed, regardless of the initial path, multipath is beneficial in 58%
of the scenarios with QUIC, while this percentage with TCP drops
to 20%.

High-BDP-losses: (MP)QUIC better copes with loss.When
adding random loss in high-BDP networks, (MP)QUIC still outper-
forms (MP)TCP as shown on Fig. 8. The better loss signaling, more
precise latency estimation and the fairness in the evolution of the
congestion window of paths with (MP)QUIC explain those results.

CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea Quentin De Coninck and Olivier Bonaventure

10−1 100 101

Time Ratio
0.0

0.2

0.4

0.6

0.8

1.0

CD
F

GET 256 KB, 506 simulations, low-BDP-no-loss
Time TCP / QUIC
Time MPTCP / MPQUIC

Figure 9: For small transfers, QUIC is
faster thanks to its shorter handshake.

MPTCP vs. TCP MPQUIC vs. QUIC
Protocol

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

Ex
p.

 A
gg

re
ga

tio
n

Be
ne

fit

GET 256 KB, 253 scenarios low-BDP-no-loss

Best path first Worst path first

Figure 10: For small transfers, QUIC
should remain single-path with hetero-
geneous paths.

0 2 4 6 8 10 12 14
Sent Time [s]

0

50

100

150

200

250

300

De
la

y
to

 a
ns

we
r r

eq
ue

st
 [m

s]

Figure 11: Multipath QUIC is able to
perform network handover by design.

4.2 Short File Downloads
Our next scenario considers the download of a 256 KB file on a
single stream. Due to space limitation, we only discuss the low-BDP
scenarios without random losses.

(MP)QUIC outperforms (MP)TCP. Figure 9 shows that single-
path QUIC outperforms HTTPS over TCP. For short transfers, the
connection establishment is a non-negligible fraction of the total
transfer time. With QUIC, the secure handshake consumes a single
round-trip-time. With TLS/TCP, the TCP 3-way handshake and the
TLS 1.2 handshake consume together 3 round-trip-times. This delay
could be reduced by using the emerging TLS 1.3 [42] and TCP Fast
Open option [40].

Multipath is not useful for short transfers. MPQUIC out-
performs MPTCP in most situations. However, using a multipath
protocol is not really desirable for short transfers, as shown in
Fig. 10. When the connection is initiated on the best path, multi-
path can bring some benefits, as suggested by previous results [12].
However, performance mainly depends on the connection hand-
shake latency and the data transfer might be over before taking full
advantage of the multipath opportunities.

4.3 Network Handover
The last studied situation involves request/response traffic over a
single connection with random packet loss on the initial path. This
corresponds to a smartphone connection to a bad WiFi network
and a good cellular network. This is one of the main motivations
for adding MPTCP on smartphones [8]. We simulate this scenario
with an initial path with a lower latency (15 ms RTT) than the other
one (25 ms RTT), and where a client sends 750 bytes long requests
every 400 ms. The server immediately replies to each request with a
750 bytes response. Initially, paths are loss-free, and after 3 seconds,
the initial path becomes completely lossy.

Figure 11 shows the delay viewed by the MPQUIC client from
when the request was triggered until the response is received. Ini-
tially, both hosts use the initial path as it exhibits a lower latency.
Since the loss event occurs after an answered request, the client is
the first host to notice path failure. After facing a RTO, its scheduler
will retransmit the request over the slow but functional path. This
is because our MPQUIC implementation, like MPTCP in Linux [39],
considers a path as potentially failed when it experiences a RTO

without observing any network activity since last packet trans-
mission. The affected path remains in this state until data is ac-
knowledged on this path. The packet scheduler temporarily ignores
potentially failed paths. This enables it to quickly decide to use
another path when severe losses affect one path. However, when
the remote host receives the data that has been retransmitted over
the second path, it does not know that a previous copy was sent
unsuccessfully over the first path and could decide to respond over
this one. This would likely lead to a loss followed by retransmis-
sions and the first path would be marked as potentially failed on
the remote host. This recovery time could be long for interactive
applications. To avoid this additional RTO, the client also adds a
PATHS frame in the retransmitted packet indicating that the initial
path failed. When the server receives it, it can then directly send
the response back to the client without experiencing RTO. The
connection can then continue on the functional path.

5 DISCUSSION
Multipath capabilities are important for smartphones and dual-
stack hosts. In this short paper, we propose extensions to QUIC
that enable this new protocol to use several paths simultaneously.
Our extensions remain simple thanks to QUIC’s flexible design.
We implemented Multipath QUIC in the open-source QUIC imple-
mentation in go. Our performance evaluation, over more than a
thousand Mininet scenarios that cover a wide range of parame-
ters, shows that Multipath QUIC can provide improved benefits to
QUIC than Multipath TCP to regular TCP. They also indicate that
(MP)QUIC copes better with packet losses than (MP)TCP.

This work is a first step to the inclusion of native multipath
capabilities inside QUIC. Our further work will be to port it to
smartphones and dual-stack hosts, and explore its performance
through large-scale Internet measurements.

Software artefacts. To ensure the repeatability of our results
and allow other researchers to improve Multipath QUIC, we re-
lease our modifications to the QUIC implementation written in
go, the Mininet images used to perform the simulations and all
the benchmark applications that we used. These are available at
https://multipath-quic.org.

We thank our anonymous reviewers and our shepherd, Adrian Perrig, whose construc-
tive comments have helped us to improve the paper.

https://multipath-quic.org

Multipath QUIC: Design and Evaluation CoNEXT ’17, December 12–15, 2017, Incheon, Republic of Korea

REFERENCES
[1] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo. 2014. Deconstructing

mptcp performance. In Network Protocols (ICNP), 2014 IEEE 22nd International
Conference on. IEEE, 269–274.

[2] R. Beverly, W. Brinkmeyer, M. Luckie, and J. P. Rohrer. 2013. IPv6 alias resolution
via induced fragmentation. In PAM’13. Springer, 155–165.

[3] A. Bittau, M. Hamburg, M. Handley, D. Mazieres, and D. Boneh. 2010. The
Case for Ubiquitous Transport-Level Encryption.. In USENIX Security Symposium.
403–418.

[4] O. Bonaventure and S. Seo. 2016. Multipath TCP Deployments. IETF Journal
(November 2016).

[5] Ł. Budzisz, J. Garcia, A. Brunstrom, and R. Ferrús. 2012. A taxonomy and survey
of SCTP research. ACM Computing Surveys (CSUR) 44, 4 (2012), 18.

[6] G. Carlucci, L. De Cicco, and S. Mascolo. 2015. HTTP over UDP: an Experimental
Investigation of QUIC. In SAC’15. ACM, 609–614.

[7] Y.-C. Chen, Y.-s. Lim, R. J. Gibbens, E. M. Nahum, R. Khalili, and D. Towsley.
2013. A measurement-based study of multipath tcp performance over wireless
networks. In IMC’13. ACM, 455–468.

[8] S. Cheshire, D. Schinazi, and C. Paasch. 2017. Advances in Networking, Part 1.
(June 2017). https://developer.apple.com/videos/play/wwdc2017/707//.

[9] L. Clemente et al. 2017. A QUIC implementation in pure go. (2017). https:
//github.com/lucas-clemente/quic-go.

[10] Y. Cui, T. Li, C. Liu, X. Wang, and M. Kühlewind. 2017. Innovating Transport with
QUIC: Design Approaches and Research Challenges. IEEE Internet Computing 21,
2 (2017), 72–76.

[11] Q. De Coninck, M. Baerts, B. Hesmans, and O. Bonaventure. 2016. A first analysis
of multipath tcp on smartphones. In International Conference on Passive and Active
Network Measurement. Springer, 57–69.

[12] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan. 2014. Wifi, lte, or
both?: Measuring multi-homed wireless internet performance. In IMC’14. ACM,
181–194.

[13] A. Dhamdhere, M. Luckie, B. Huffaker, A. Elmokashfi, E. Aben, et al. 2012. Mea-
suring the deployment of IPv6: topology, routing and performance. In IMC’12.
ACM, 537–550.

[14] M. Duke et al. 2015. A Roadmap for Transmission Control Protocol (TCP) Speci-
fication Documents. RFC7414. (February 2015).

[15] K. Fall and S. Floyd. 1996. Simulation-based comparisons of Tahoe, Reno and
SACK TCP. ACM SIGCOMM Computer Communication Review 26, 3 (1996), 5–21.

[16] S. Ferlin, O. Alay, O. Mehani, and R. Boreli. 2016. BLEST: Blocking Estimation-
based MPTCP Scheduler for Heterogeneous Networks. In IFIP Networking 2016.
IEEE Computer Society, IEEE, Los Alamitos, CA, USA.

[17] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. 2013. TCP Extensions for
Multipath Operation with Multiple Addresses. RFC 6824. (January 2013).

[18] B. Ford and J. R. Iyengar. 2008. Breaking Up the Transport Logjam.. In HotNets.
85–90.

[19] S. Ha, I. Rhee, and L. Xu. 2008. CUBIC: a new TCP-friendly high-speed TCP
variant. ACM SIGOPS Operating Systems Review 42, 5 (2008), 64–74.

[20] R. Hamilton et al. 2016. QUIC: A UDP-Based Multiplexed and Secure Transport.
(July 2016). Internet draft, draft-hamilton-quic-transport-protocol-00.

[21] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown. 2012. Repro-
ducible network experiments using container-based emulation. In CONEXT’12.
ACM, 253–264.

[22] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and H. Tokuda. 2011.
Is it still possible to extend TCP?. In IMC’11. ACM, 181–194.

[23] J. Iyengar and T. M. 2017. QUIC: A UDP-Based Multiplexed and Secure Transport.
(June 2017). Internet draft, draft-ietf-quic-transport-04.

[24] J. Iyengar and I. Swett. 2015. QUIC: A UDP-Based Secure and Reliable Transport
for HTTP/2. (July 2015). Internet draft, draft-tsvwg-quic-protocol-00.

[25] A. M. Kakhki, S. Jero, D. Choffnes, A. Mislove, and C. Nita-Rotaru. 2017. Taking
a Long Look at QUIC: An Approach for Rigorous Evaluation of Rapidly Evolving
Transport Protocols. In IMC’17. ACM.

[26] D. Kaspar. 2012. Multipath aggregation of heterogeneous access networks. ACM
SIGMultimedia Records 4, 1 (2012), 27–28.

[27] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec. 2012. MPTCP
is not pareto-optimal: performance issues and a possible solution. In CONEXT’12.
ACM, 1–12.

[28] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic, D. Zhang, F. Yang, F. Koura-
nov, I. Swett, J. Iyengar, et al. 2017. The QUIC Transport Protocol: Design and
Internet-Scale Deployment. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 183–196.

[29] I. Livadariu, A. Elmokashfi, and A. Dhamdhere. 2016. Characterizing IPv6 control
and data plane stability. In IEEE INFOCOM 2016. IEEE, 1–9.

[30] I. Livadariu, S. Ferlin, Ö. Alay, T. Dreibholz, A. Dhamdhere, and A. Elmokashfi.
2015. Leveraging the IPv4/IPv6 identity duality by using multi-path transport. In
Computer CommunicationsWorkshops (INFOCOMWKSHPS), 2015 IEEE Conference
on. IEEE, 312–317.

[31] R. Lychev, S. Jero, A. Boldyreva, and C. Nita-Rotaru. 2015. How secure and quick
is QUIC? Provable security and performance analyses. In Security and Privacy
(SP), 2015 IEEE Symposium on. IEEE, 214–231.

[32] P. Megyesi, Z. Krämer, and S. Molnár. 2016. How quick is QUIC?. In ICC’16. IEEE,
1–6.

[33] B.-H. Oh and J. Lee. 2015. Constraint-based proactive scheduling for MPTCP in
wireless networks. Computer Networks 91 (2015), 548–563.

[34] C. Paasch, S. Barre, and et al. 2009-2017. Multipath TCP in the Linux Kernel.
(2009-2017). http://www.multipath-tcp.org.

[35] C. Paasch, G. Detal, F. Duchene, C. Raiciu, and O. Bonaventure. 2012. Exploring
mobile/WiFi handover with multipath TCP. In CellNet’12. ACM, 31–36.

[36] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. 2014. Experimental evaluation
of multipath TCP schedulers. In SIGCOMM workshop on Capacity sharing. ACM,
27–32.

[37] C. Paasch, R. Khalili, and O. Bonaventure. 2013. On the benefits of applying
experimental design to improve multipath TCP. In CONEXT’13. ACM, 393–398.

[38] Q. Peng, A. Walid, J. Hwang, and S. H. Low. 2016. Multipath TCP: Analysis,
design, and implementation. IEEE/ACM Transactions on Networking 24, 1 (2016),
596–609.

[39] C. Pinedo. 2015. Improve active/backup subflow selection. (January 2015).
https://github.com/multipath-tcp/mptcp/pull/70.

[40] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and B. Raghavan. 2011. TCP Fast
Open. In CONEXT’11. ACM, 21.

[41] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda, F. Duchene, O. Bonaventure, and
M. Handley. 2012. How hard can it be? designing and implementing a deployable
multipath TCP. In NSDI’12. USENIX Association, 29–29.

[42] E. Rescorla. 2017. The Transport Layer Security (TLS) Protocol Version 1.3. (April
2017). Internet draft, draft-ietf-tls-tls13-20.

[43] E. Rescorla and T. Dierks. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. (Aug. 2008). https://doi.org/10.17487/RFC5246

[44] J. Roskind. 2013. QUIC(Quick UDP Internet Connections): Multiplexed Stream
Transport Over UDP. Technical report, Google (2013).

[45] J. Santiago, M. Claeys-Bruno, and M. Sergent. 2012. Construction of space-filling
designs using WSP algorithm for high dimensional spaces. Chemometrics and
Intelligent Laboratory Systems 113 (2012), 26–31.

[46] Stewart, R. (Ed.). 2007. Stream Control Transmission Protocol. (Sept. 2007).
RFC4960.

[47] D. Wischik, M. Handley, and M. B. Braun. 2008. The resource pooling principle.
ACM SIGCOMM Computer Communication Review 38, 5 (2008), 47–52.

[48] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley. 2011. Design, Implemen-
tation and Evaluation of Congestion Control for Multipath TCP.. In NSDI’11.

https://developer.apple.com/videos/play/wwdc2017/707//
https://github.com/lucas-clemente/quic-go
https://github.com/lucas-clemente/quic-go
https://doi.org/10.17487/RFC5246

	Abstract
	1 Introduction
	2 QUIC Background
	3 Multipath QUIC
	4 Performance Evaluation
	4.1 Large File Downloads
	4.2 Short File Downloads
	4.3 Network Handover

	5 Discussion
	References

